Variable acceleration

Functions of time

- If acceleration of a moving particle is variable, it changes with time and can be expressed as a function of time.
- Velocity and displacement can also be expressed as functions of time

- Increasing acceleration
- The gradient of the curve increases over time

- Decreasing acceleration
- Gradient of the curve decreases over time

Example 1: A body moves in a straight line, such that its displacement, s metres, from a point O at time t seconds is given by $s=2 t^{3}-3 t$ for $t>0$. Find:
a. s when $t=2$
$s=2 \times 2^{3}-3 \times 2$
$=16-6=10$ metres
b. the time taken for the particle to return to O $2 t^{3}-3 t=0$
$t\left(2 t^{2}-3\right)=0 \Rightarrow \quad$ either $t=0$ or $2 t^{2}=3$

$$
\Rightarrow t^{2}=\frac{3}{2} \quad \text { so } t= \pm \sqrt{\frac{3}{2}} \text { seconds } \longrightarrow
$$

```
Only take }+\sqrt{}{\frac{3}{2}
```

seconds because equation is only valid for $t>0$
Time taken to return to $O=\sqrt{\frac{3}{2}}$ seconds

Using differentiation

Velocity is the rate of change of displacement

- If the displacement, s, is expressed as a function of t, then the velocity, v, can be expressed as $v=\frac{d s}{d t}$

Acceleration is the rate of change of velocity.

- If the velocity, v, is expressed as a function of t, then the acceleration, a, can be expressed as $a=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}$

Example 2: A particle P is moving on the x-axis. At time t seconds, the displacement x metres from O is given by $x=t^{4}-32 t+12$. Find
a. The velocity of P when $t=3$
$x=t^{4}-32 t+12$
$v=\frac{d x}{d t}=4 t^{3}-32$
When $t=3$,
$2=4 \times 3^{3}-32=76$
The velocity of P when $t=3$ is $76 \mathrm{~ms}^{-1}$ in the direction of x increasing.
b. The value of t for which P is instantaneously at rest
$v=4 t^{3}-32=0$
$t^{3}=\frac{32}{4}=8$
$t=2$
c. The acceleration of P when $t=1.5$
$v=4 t^{3}-32$
$a=\frac{d v}{d t}=12 t^{2}$
When $t=1.5$,
$a=12 \times(1.5)^{2}=27$
The acceleration of P when $t=1.5$ is $27 \mathrm{~ms}^{-2}$.

Maxima and minima problems

You can use calculus to determine maximum and minimum values of displacement velocity and acceleration.

Example 3: A child is playing with a yo-yo. The yo-yo leaves the child's hand at time $\mathrm{t}=0$ and travels vertically in a straight line before returning to the child's hand. The distance, $s \mathrm{~m}$, of the yo-yo from the child's hand after time t seconds is given by:

$$
s=0.6 t+0.4 t^{2}-0.2 t^{3}, \quad 0 \leq t \leq 3
$$

Find the maximum distance of the yo-yo from the child's hand, correct to 3 s.f. (Note that maximum value always occur at turning point, where $\frac{d s}{d t}=0$).

$$
\begin{array}{ll}
\frac{d s}{d t}=0.6+0.8 t-0.6 t^{2} \quad \Rightarrow \frac{d s}{d t}=0 \\
0.6+0.8 t-0.6 t^{2}=0 \\
3 t^{2}-4 t-3=0 & \begin{array}{l}
\text { Only take the positive } \\
\text { value of } t
\end{array} \\
t=\frac{4 \pm \sqrt{52}}{6}=1.8685 \text { or }-0.5351
\end{array}
$$

Using integration

You can integrate acceleration with respect to time to find velocity, and you can integrate velocity with respect to time to find displacement.

Example 4: A particle is moving on the x-axis. At time $t=0$, the particle is at the point where $x=5$. The velocity of the particle at time t seconds (where $t \geq 0$) is ($6 t-t^{2}$) ms^{-1}. Find:
a. An expression for the displacement of the particle from O at time t seconds $x=\int v d t$
$=3 t^{2}-\frac{t^{3}}{3}+c . \quad$ where c is a constant of integration.
When $t=0, x=5$

$$
5=3 \times 0^{2}-\frac{(0)^{3}}{3}+c . \quad \Rightarrow c=5
$$

The displacement of the particle from O after t seconds is $\left(3 t^{2}-\frac{t^{3}}{3}+5\right) \mathrm{m}$
b. The distance of the particle from its starting point when $t=6$.

When $t=6$
$\Rightarrow 3 \times 6^{2}-\frac{(6)^{3}}{3}+5=41$
The distance from the starting point is $(41-5) \mathrm{m}=36 \mathrm{~m}$.

Constant acceleration formulae

You can use calculus to derive the formulae for motion with constant acceleration.
Example 5: A particle moves in a straight line with constant acceleration, $a \mathrm{~ms}^{-2}$ Given that its initial velocity is $u \mathrm{~ms}^{-1}$ and its initial displacement is 0 m , prove that its velocity, $v \mathrm{~ms}^{-1}$ at time t seconds is given by $v=u+a t$

$$
\begin{aligned}
& \begin{array}{l}
v=\int a d t \\
=a t+c
\end{array} \\
& \text { When } t=0, v=u, \\
& \text { So } u=a \times 0+c \\
& \quad u=c
\end{aligned}
$$

Hence $v=u+a t$

